Методы расчета линейных электрических цепей. Метод преобразования схем Эквивалентные цепи постоянного тока

Сущность эквивалентных преобразований заключается в том, что часть электрической цепи заменяется более простой схемой: либо с меньшим количеством ветвей и сопротивлений, либо с меньшим числом узлов или контуров. Преобразование считается эквивалентным , если токи и напряжения непреобразованной части схемы остаются прежними, то есть одинаковыми в исходной и преобразованной схемах. Сами по себе эквивалентные преобразования не являются методом расчёта, однако способствуют упрощению расчётов.

Часто используются следующие эквивалентные преобразования:

1. Замена последовательного соединения сопротивлений r 1 , r 2 , … r n одним эквивалентным r Э = .

2. Замена параллельного соединения пассивных ветвей с проводимостями g 1 , g 2 , … g n одной эквивалентной g Э = .

3. Замена смешанного соеди-нения сопротивлений рис. 1.35,а одним эквивалентным (рис. 1.35,б), где r Э = r 1 + , что следует из поэтапного применения п.2 и п.1 настоящих рекомендаций.

4. Эквивалентные преобразования пассивных трёхполюсников – треугольника (рис. 1.36,а) и звезды (рис.1.36,б). При этом сопротивления эквивалентного треугольника

r 12 = r 1 + r 2 + , r 23 = r 2 + r 3 + , r 31 = r 3 + r 1 + ,

а сопротивления эквивалентной звезды r 1 = , r 2 = , r 3 = ,



где r D = r 12 + r 23 +r 31 – сумма сопротивлений ветвей треугольника.

5. При дальнейшем изучении курса ТОЭ будут представлены формулы эквивалентных замен пассивных четырёхполюсников Т- и П-схемами, замен цепей с распределёнными параметрами эквивалентными четырёхполюсни-ками, устранение индуктивной связи в цепях и др.

Особенно удобно пользоваться методом эквивалентных преобразований при расчёте входных и взаимных сопротивлений или входных и взаимных проводимостей схем, коэффициентов передачи напряжений и токов, поступающих на вход схемы при передаче сигнала в нагрузку, когда на схему воздействует только один источник энергии.

Решение

Проверяем условие равновесия моста:

r 2 ×r 3 = 40×60 = 2400; r 1 ×r 4 = 20×30 = 600.

Так как r 1 ×r 4 ¹r 2 ×r 3 , то мост неуравновешен, все его токи отличны от нуля.

Заменим треугольник сопротивлений r 2 -r 4 -r 5 эквивалентным соединением в звезду, получим схему рис. 1.37, для которой

r a = = = 9 Ом ,

r b = = = 12 Ом ,

r c = = = 12 Ом .

Входное сопротивление схемы по отношению к зажимам источника ЭДС

r вх = r + + r b =

10 + + 12 =

43,86 Ом .

Входной ток мостовой схемы

I 0 = = = 9,12 А .

Токи параллельных ветвей схемы рис. 1.37

I 1 = I 0 × = 9,12× = 6,23 А ,

I 2 = I 0 × = 9,12× = 2,89 А .

Напряжение U 43 = I 1 ×r с + I 0 ×r b = 6,23×12 + 9,12×12 = 184,2 B .

Возвращаемся к исходной схеме и рассчитываем токи треугольника сопротивлений: I 2 = = = 4,61 А ,

I 4 = I 0 – I 2 = 9,12 – 4,61 = 4,51 А ,

I 5 = I 2 – I 1 = 4,61 – 6,23 = -1,62 А .

ЗАДАЧА 1.36. Определить токи в схеме рис. 1.38,а, используя эквива-лентные преобразования, если входное напряжение схемы U вх = 400 В , а пара-метры r 1 = 10 Ом , r 2 = 60 Ом , r 3 = 20 Ом , r 4 = 100 Ом , сопротивление нагруз-ки, подключенной на выходе схемы (выход четырёхполюсника), r 5 = 50 Ом .



Рассчитать также коэффициент передачи напряжения k U и коэффициент передачи тока k I .

Решение. Вариант 1

Заменим смешанное соединение сопротивлений r 3 , r 4 , r 5 эквивалентным сопротивлением (рис. 1.38,б) r ac :

r ac = r 3 + = 20 + = 53,33 Ом .

Входное сопротивление схемы:

r вх = r 1 + = 10 + = 38,24 Ом .

Входной ток схемы: I вх = I 1 = = = 10,46 А .

Напряжение на разветвлении схемы рис. 1.38,б:

U ad = I 1 × = 10,46× = 295,4 B ,

а токи I 2 = = = 4,92 А , I 3 = = = 5,54 А .

Напряжение на разветвлении правого участка схемы рис. 1.38,а со смешанным соединением U bc = U вых = I 3 × = 5,54× = 184,6 B ,

а токи параллельных ветвей I 4 = = = 1,85 А ,

I 5 = I вых = = = 3,69 А .

Коэффициент передачи напряжения k U = = = 0,462.

Коэффициент передачи тока k I = = = 0,353.

Решение. Вариант 2

Схемы с одним источником питания (это имеет место всегда при изуче-нии вопросов, связанных с передачей сигнала со входа схемы в нагрузку) удобно рассчитывать методом пропорциональных величин . При этом задаются произвольным значением тока или напряжения самого удалённого от источника питания участка – в нашем случае примем ток I 5 = 10 А .

Затем с помощью законов Кирхгофа рассчитывают напряжение на входе (так называемое воздействие ), которое на выходе создаёт ток I 5 (так называемая реакция цепи ), который равен принятому значению:

U 5 = I 5 ×r 5 = 10×50 = 500 B ,

I 4 = = = 5 A , I 3 = I 5 + I 4 = 10 + 5 = 15 A ,

U ad = I 3 ×r 3 + I 5 ×r 5 = 15×20 + 500 = 800 B ,

I 2 = = = 13,33 A , I 1 = I 2 + I 3 = 13,33 + 15 = 28,33 A ,

U вх = I 1 ×r 1 + U ad = 28,33×10 + 800 = 1083 B .

Находят коэффициент пропорциональности k = = = 0,369, на

который необходимо умножить все ранее полученные выражения, чтобы получить искомые значения при заданном напряжении U вх = 400 В .

Получаем I 1 = I 1 ×k = 28,33×0,369 = 10,46 А ,

I 2 = I 2 ×k = 13,33×0,369 = 4,92 А , I 3 = I 3 ×k = 15×0,369 = 5,54 А ,

I 4 = I 4 ×k = 5×0,369 = 1,85 А , I 5 = I 5 ×k = 10×0,369 = 3,69 А ,

U ad = U ad ×k = 800×0,369 = 295,4 B , U 5 = U вых = U 5 ×k = 500×0,369 = 185 B ,

что совпадает с решением по варианту 1.

ЗАДАЧА 1.38. Определить токи в ветвях схемы, приведенной на рис. 1.39, заменив треугольник сопротивлений r ab -r bc -r ca эквивалентной звездой, если: E A = 50 В , E B = 30 В , E C = 100 В ,

r A = 3,5 Ом , r B = 2 Ом , r C = 7 Ом , r ab = 6 Ом , r bc = 12 Ом , r ca = 6 Ом .

Ответы : I A = -0,4 A , I B = -4,4 A , I C = 4,8 A ,

I ab = 2,1 A , I bc = -2,3 A , I ca = 2,5 A .

ЗАДАЧА 1.39. Рассчитать токи в схеме рис. 1.40 методом преобразования электрической цепи, проверить БМ, если: r 1 = r 2 = 6 Ом ,

r 3 = 3 Ом , r 4 = 12 Ом , r 5 = 4 Ом , j = 6 А .

Ответы : I 1 = 1 A , I 2 = 1 A , I 3 = 2 A ,

I 4 = 1 A , I 5 = 3 A .

ЗАДАЧА 1.40. Решить задачу 1.19 с помощью эквивалентных преобразований цепи.

ЗАДАЧА 1.41. В цепи рис. 1.41 j = 50 мА , E = 60 В , r 1 = 5 кОм , r 2 = 4 кОм , r 3 = 16 кОм , r 4 = 2 кОм , r 5 = 8 кОм . Вычислить ток ветви с сопротивлением r 5 , пользуясь преобразованием схем с источниками тока в эквивалентные схемы с источниками ЭДС и наоборот.

Решение. Вариант 1

Перерисуем схему рис. 1.41 в виде рис. 1.42,а. Эквивалентность исходной и новой схем очевидна: к соответствующим узлам обеих схем подходят одинаковые токи. В частности, результирующий ток, подводимый к узлу а , равен нулю. Преобразуем источники тока j последней схемы в источники с ЭДС Е 1 и Е 3 (рис. 1.42,б):

Е 1 = jr 1 = 50·10 -3 ·5·10 3 = 250 В ;

Е 3 = jr 3 = 50·10 -3 ·16·10 3 = 800 В .

Складывая соответствующие элементы ветвей, приводим рис. 1.42,б к виду рис. 1.42,в, для которого Е 6 = Е Е 1 = 60 – 250 = -190 В ;

r 6 = r 1 + r 2 = 9 кОм ; r 7 = r 3 + r 4 = 18 кОм .

Преобразуем схему рис. 1.42,в в схему с источниками тока рис. 1.42,г:

j 6 = = - = -21,2 мА ; j 7 = = = 44,4 мА .

Сложив параллельные элементы, получим схему рис. 1.42,д:

j ЭКВ = j 6 + j 7 = -21,1 + 44,4 = 22,3 мА ; r ЭКВ = = = 6 кОм .



В ветвь r 5 ответвляется часть тока j ЭКВ , равная

I 5 = j ЭКВ · = 23,3· = 10 мА .

Электрические цепи считают простыми, если они содержат только последовательное или только параллельное соединение элементов.

Участок цепи, содержащий и параллельное, и последовательное соединение элементов называют сложным или участком со смешанным соединением элементов.

Преобразования электрических цепей считают эквивалентными, если при их выполнении напряжения и токи на интересующих нас участках не изменяются.

При преобразовании сложных электрических цепей пользуются последовательным методом, то есть последовательно преобразуют участки цепи, имеющие простое соединение элементов.

4.3.1. Эквивалентное преобразование схемы при последовательном соединении элементов

Рассмотрим комплексную схему замещения электрической цепи, состоящей из последовательного соединения отдельных элементов (рис. 4.6). Данная цепь представляет собой контур, у которого через все элементы протекает общий для всех элементов ток. Эквивалентно преобразуем схему к одному элементу, но так чтобы напряжение и ток на выводах схемы сохранили свои значения. Это возможно, когда сопротивление исходной цепи и эквивалентной цепи одинаковы. На основании закона Ома и второго закона Кирхгофа в комплексной форме можно записать уравнение электрического равновесия

Напряжение и ток для обеих схем одинаковы, когда

Вывод. При эквивалентном преобразовании, при последовательном соединении элементов их комплексные сопротивления складываются.

1) Эквивалентное преобразование сопротивлений

Рассмотрим электрическую цепь схема, которой приведена на рис.4.7. Эквивалентно преобразуем сопротивления R 1 и R 2 к одному сопротивлению R экв.

Учитывая, что Z R =R, и соотношение полученное выше, получим R экв =R 1 +R 2 .

2) Эквивалентное преобразование емкостей.

Рассмотрим электрическую цепь схема, которой приведена на рис.4.8. Эквивалентно преобразуем емкости С 1 и С 2 к одной эквивалентной емкости С экв.

Учитывая, что Z С =1/(jωC), и соотношение полученное выше, получим

.

3) Эквивалентное преобразование индуктивностей

Рассмотрим электрическую цепь схема, которой приведена на рис.4.9 . Эквивалентно преобразуем индуктивностиL 1 и L 2 к одной эквивалентной индуктивности L экв.

Учитывая, что Z L =jωL, и соотношение полученное выше, получим L экв =L 1 +L 2 .

4.3.2. Эквивалентное преобразование схемы при параллельном соединении элементов

Рассмотрим комплексную схему замещения электрической цепи, состоящей из параллельного соединения отдельных элементов (рис. 4.10). Данная цепь содержит два узла, между которыми включены все элементы. Общим для всех элементов является напряжение на них. Эквивалентно преобразуем схему к одному элементу, но так чтобы напряжение и ток на выводах схемы сохранили свои значения. Это возможно, когда сопротивление исходной цепи и эквивалентной цепи одинаковы. На основании закона Ома и первого закона Кирхгофа в комплексной форме можно записать уравнение электрического равновесия

I=I 1 +I 2 +…+I n , или (U/Z экв) = (U/Z 1) + (U/Z 2) + …(U/Z n) .

Отсюдаследует, что

(1/Z экв) = (1/Z 1) + (1/Z 2) + … +(1/Z n), или Z экв = 1/[(1/Z 1) + (1/Z 2) + … +(1/Z n)].

Учитывая, (1/Z ) = Y – комплексная проводимость элемента, можно записать, что

Y экв = Y 1 + Y 2 + … + Y n .

Вывод. При эквивалентном преобразовании, при параллельном соединении элементов их комплексные проводимости складываются.

МЕТОД ЭКВИВАЛЕНТНЫХ ПРЕОБРАЗОВАНИЙ

Во многих случаях анализа сложных ЭЦ возникает необходимость преобразование цепи с целью ее упрощения, т.е. уменьшения количества элементов цепи. Преобразование считается эквивалентным, если оно не изменяет токи и напряжения в непреобразованной части цепи. При этом изменение топологии ЭЦ не меняет её свойств. Отметим, что не только виды элементов, но и топология их сочетания определяют свойства ЭЦ.

3.1. Любой источник тока (рис. 1.2 б) может быть заменен эквивалентным источником напряжения (рис. 1.2а) и наоборот. При этом источник тока, эквивалентный источнику напряжения, должен генерировать ток, равный току короткого замыкания источника напряжения, и иметь параллельное внутреннее сопротивление, равное последовательному внутреннему сопротивлению источника напряжения, т.е. схемы эквивалентны, если

или .

Например, после замены источника тока источником напряжения (рис. 1.3) в обобщенной ветви последняя будет выглядеть так:

= Рис.3.1 Рис.3.2

где . Обратите внимание, направление эквивалентного источника ЭДС совпадает с напряжением источника тока . Ниже будет показано, что данный участок цепи можно упростить, как показано на рис. (3.2), где .

3.2. Последовательное соединение резисторов при эквивалентной замене суммируется:

где – число последовательно соединенных резисторов. При данном соединении всегда больше большего из сопротивлений. В частном случае, если каждое из сопротивлений равно , то .

Пример. Определить эквивалентное сопротивление цепи на зажимах .

= Рис 3.4 Рис 3.5 . Рис 3.6

Здесь , т.к. разрыв цепи между точками и имеет бесконечно большое сопротивление.

3.3. При параллельном соединении резистора суммируется их проводимость , где - число параллельно соединенных резисторов, и . При параллельном соединении всегда меньше меньшего из сопротивлений. В частном случае, если каждое из сопротивлений равно , то . В случае двух параллельно соединенных сопротивлений и :

= Рис 3.7 Рис 3.8 , или .

Пример. Определить на зажимах .

= Рис 3.9 Рис 3.10 а) . Рис 3.10

Здесь , т.к. сопротивление закоротки равно нулю.

РАСЧЕТНЫЕ ФОРМУЛЫ

Тип элемента Последовательное соединение m-элементов Параллельное соединение m-элементов Резисторы Конденсаторы Катушки индуктивности

3.4. При смешанном соединении резисторов эквивалентное сопротивление цепи определяет последовательным упрощением схемы и «сворачиванием» ее к одному сопротивлению, равному . При расчете токов в отдельных ветвях ЭЦ «разворачивают» в обратной последовательности.

Пример. Определить относительно зажимов .

= = Рис 3.11 Рис 3.12 Рис 3.12 а) . = = Рис 3.13 Рис 3.14 Рис 3.15 б) , . = Рис 3.16 Рис 3.17 = Рис 3.18 Рис 3.19 в) , где .

В последнем примере сопротивление закорочено, а сопротивления , , имеют только одну общую точку со схемой и поэтому они не учитываются. Сопротивления и включены последовательно и эквивалентное им сопротивление , а и включены параллельно, поэтому:

3.5. Преобразование пассивного треугольника сопротивлений в эквивалентную трехлучевую звезду. Схемы будут эквивалентны, если сопротивления между узлами и , и , и в обеих схемах «звезды» и «треугольника» будут одинаковыми:

= Рис. 3.20 Рис. 3.21

Решая совместно эти уравнения, получим:

Обратное преобразование трехлучевой звезды в треугольник:

Пример . Определить эквивалентное сопротивление ЭЦ относительно зажимов .

= Рис 3.22 Рис 3.23 = Рис 3.24 Рис 3.25

Сначала преобразуем треугольник сопротивлений , , в эквивалентную трехлучевую звезду , , ; затем преобразуем последовательно соединенные резисторы , и , , эквивалентные сопротивления которых соединены между собой параллельно и могут быть заменены одним :

Резистор включен параллельно резисторам и , соединенным между собой последовательно. Поэтому эквивалентное сопротивление всей ЭЦ относительно зажимов :

3.6. Преобразование ветвей, содержащих последовательные и параллельные соединения источников ЭДС и тока.

= Рис 3.26 Рис 3.27 = Рис 3.28 Рис 3.29 = или Рис 3.30 Рис 3.31 Рис 3.32 а) г) Если . Два источника тока могут быть соединены последовательно, если они равны и одинаково направлены в противном случае не будет выполняться ЗТК в месте соединения двух источников. . Два источника ЭДС могут быть включены параллельно, если они равны и имеют одинаково включенную полярность. Если эти условия не выполняются, то ЗНК будет нарушен в контуре, содержащем эти источники. д) 3.7. Часть схемы, состоящей из параллельных ветвей ЭДС и проводимостями , эквивалентно либо одной ветви с проводимостью и ЭДС :

либо двум параллельным ветвям с той же проводимостью и источником тока :

ПРАВИЛО ЗНАКОВ. Слагаемые , берутся с плюсом при совпадении направления ЭДС и , при несовпадении – с минусом.

Пример. Преобразовать схему с параллельными ветвями, содержащими источники ЭДС, в эквивалентную.

= = Рис 3.33 Рис 3.34 Рис 3.35

Где):

Посредством найдем токи на резисторах и ( и ):

Остальные токи можно найти посредством ЗТК для изначальной схемы.

Метод эквивалентных преобразований заключается в том, что электрическую цепь или ее часть заменяют более простой по структуре электрической цепью. При этом токи и напряжения в непреобразованной части цепи должны оставаться неизменными. В любое последовательное соединение может входить произвольное число сопротивлений (резисторов) и источников ЭДС, а также не более одного источника тока.

Наличие более одного источника тока в соединении исключается вследствие логического противоречия, т.к. в последовательном соединении через все элементы протекает одинаковый ток и этот ток равен току источника. Если же источников тока несколько, то они должны формировать несколько различных токов, что невозможно по характеру их соединения. Присутствие источника в соединении означает лишь то, что ток в этом соединении задан, поэтому без ущерба для общности выводов источник тока можно вынести за пределы соединения и не рассматривать. Тогда в общем случае в соединение будут входитьm сопротивлений и n источников ЭДС (рис а). Не изменяя режима работы соединения, их можно переместить так, чтобы образовались две группы элементов: сопротивления и источники ЭДС (рис. б). Для этой цепи можно написать уравнение Кирхгофа в виде:

U=IR1+IR2+…+IRm+E1+…-En-1+En=I(R1+R2+…Rm)+E1…-En-1+En=IR+E

Таким образом, любое последовательное соединение элементов можно представить последовательным соединением одного сопротивленияR и одного источника ЭДС E Причем, общее сопротивление соединения равно сумме всех сопротивлений

а общая ЭДС – алгебраической сумме

6.Метод узловых потенциалов

Ток в любой ветви схемы можно найти по закону Ома для участка цепи, содержащего ЭДС. Для того чтобы можно было применить закон Ома, необходимо знать потенциалы узлов схемы. Метод расчеты электрических цепей, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов. Допустим, что в схеме n узлов. Так как любая (одна) точка схемы может быть заземлена без изменения токораспределения в ней, один из узлов схемы можно мысленно зазамлить, т. е.принять потенциал его равным нулю. При этом число неизвестных уменьшается с n до n-1. Число неизвестных в методе узловых потенциалов равно числу уравнений, которые необходимо составить для схемы по первому закону Кирхгофа. В том случае, когда число узлов без единицы меньше числа независимых контуров в схеме, данный метод является более экономным, чем метод контурных токов. Первый закон Кирхгофа: Алгебраическая сумма сил токов для каждого узла в разветвленной цепи равна нулю I1+I2+I3+…+In=0

7.Метод двух узлов

Часто встречаются схемы, содержащие всего два узла. Наиболее рациональным методом расчета токов в них является метод двух узлов. Под методом двух узлов понимают метод расчета электрических цепей, в котором за искомое (с его помощью определяют затем токи ветвей) принимают напряжение между двумя узлами схемы. Схема имеет два узла. Потенциал точки 2 примем равным нулю φ2 = 0. Составим узловое уравнение для узла 1.

φ1(g1+g2+g3)- φ2(g1+g2+g3)=E1g1-E3g3

U12= φ1- φ2= φ1= (E1g1-E3g3)/g1+g2+g3, где

g1=1/R1, g2=1/R2, g3=1/R3 – проводимости ветвей

В общем виде

В знаменателе формулы - сумма проводимостей параллельно включенных ветвей. В числителе - алгебраическая сумма произведений ЭДС источников на проводимости ветвей, в которые эти ЭДС включены. ЭДС в формуле записывается со знаком "плюс", если она направлена к узлу 1, и со знаком "минус", если направлена от узла 1.После вычисления величины потенциала φ1 находим токи в ветвях, используя закон Ома для активной и пассивной ветви.

8 .Метод контурных токов

При расчете методом контурных токов полагают, что в каждом независимом контуре схмы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей. Т. о., метод контурных токов можно определить как метод расчета, в котором за искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было составить для схемы по второму закону Кирхгофа: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура.I1R1+I2R2=E1+E2

Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно. Выбираются независимые контуры, и задаются произвольные направления контурных токов.В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид: I11(R1+Ri1)+I11R3-I22R3=E1,

I22(Ri2-R2)+I22R3-I11R3=-E2 Перегруппируем слагаемые в уравнениях I11(R1+Ri1+R3)-I22R3=E1=E11, -I11R3+I22(Ri2+R2+R3)=-E2=E22 Суммарное сопротивление данного контура называется собственным сопротивлением контура. Cобственные сопротивления контуров схемы R11=R1+Ri1+R3, R22=Ri2+R2+R3 Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров. R12=R21=R3 где R12 - общее сопротивление между первым и вторым контурами;R21 - общее сопротивление между вторым и первым контурами.E11 = E1 и E22 = E2 - контурные ЭДС.В общем виде уравнения (4.4) и (4.5) записываются следующим образом I11R11+I22R12=E11, I11R21+I22R22=E22 Собственные сопротивления всегда имеют знак "плюс".

Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению. Решая уравнения совместно, находим контурные токи I11 и I22 , затем от контурных токов переходим к токам в ветвях. I1=I11, I2=I22,I3=I11-I22.

9.Метод наложения. Данный метод справедлив только для линейных электрических цепей и является особенно эффективным, когда требуется вычислить токи для различных значений ЭДС и токов источников в то время, как сопротивления схемы остаются неизменными. Данный метод основан на принципе наложения (суперпозиции), который формулируется следующим образом: ток в k – й ветви линейной электрической цепи равен алгебраической сумме токов, вызываемых каждым из источников в отдельности.Аналитически принцип наложения для цепи, содержащей n источников ЭДС и m источников тока, выражается

соотношением:Здесь- комплекс входной проводимости k – й ветви, численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях;- комплекс взаимной проводимости k – й и i– й ветвей, численно равный отношению тока в k – й ветви и ЭДС в i– й ветви при равных нулю ЭДС в остальных ветвях.Входные и взаимные проводимости можно определить экспериментально или аналитически, используя их указанную смысловую трактовку, при этом, что непосредственно вытекает из свойства взаимности. Аналогично определяются коэффициенты передачи тока, которые в отличие от проводимостей являются величинами безразмерными.

Доказательство принципа наложения можно осуществить на основе метода контурных токов.

Если решить систему уравнений, составленных по методу контурных токов, относительно любого контурного тока, например, то получим(2),где

-определитель системы уравнений, составленный по методу контурных токов;- алгебраическое дополнение определителя.Каждая из ЭДС в (2) представляет собой алгебраическую сумму ЭДС в ветвях i–го контура. Если теперь все контурные ЭДС в (2) заменить алгебраическими суммами ЭДС в соответствующих ветвях, то после группировки слагаемых получится выражение для контурного тока в виде алгебраической суммы составляющих токов, вызванных каждой из ЭДС ветвей в отдельности. Поскольку систему независимых контуров всегда можно выбрать так, что рассматриваемая h-я ветвь войдет только в один-й контур, т.е. контурный токбудет равен действительному токуh-й ветви, то принцип наложения справедлив для токовлюбых ветвей и, следовательно, справедливость принципа наложения доказана.Таким образом, при определении токов ветвей при помощи метода наложения следует поочередно оставлять в схеме по одному источнику, заменяя остальные их внутренними сопротивлениями, и рассчитать составляющие искомых токов в этих схемах. После этого полученные результаты для соответствующих ветвей суммируются – это и будут искомые токи в ветвях исходной цепи.

Электрическая цепь с последовательным соединением сопротив-лений (рисунок 1.3, а) заменяется при этом цепью с одним эквива-лентным сопротивлением Rэк (рисунок 1.3, б), равным сумме всех сопротивлений цепи:

Rэк = R1 + R2 +…+ Rn = , (1.5)

где R1, R2 … Rn - сопротивления отдельных участков цепи.


Рисунок 1.3 Электрическая цепь с последовательным соединением сопротивлений

При этом ток I в электрической цепи сохраняет неизменным свое значение, все сопротивления обтекаются одним и тем же током. Напряжения (падения напряжения) на сопротивлениях при их последовательном соединении распределяются пропорционально сопротивлениям отдельных участков:

U1/R1 = U2/R2 = … = Un/Rn.

При параллельном соединении сопротивлений все сопро-тивления находятся под одним и тем же напряжением U (рисунок 1.4). Электрическую цепь, состоящую из параллельно соединенных сопротивлений, целесообразно заменить цепью с эквивалентным сопротивлением Rэк, которое опре-деляется из выражения

где - сумма величин, обратных сопротивлениям участков параллель-ных ветвей электрической цепи;

Rj - сопротивление параллельного участка цепи;

n - число параллельных ветвей цепи.

Рисунок 1.4 Электрическая цепь с параллельным соединением сопротивлений

Эквивалентное сопротивление участка цепи, состоящего из одинаковых парал-лельно соединенных сопротивлений, равно Rэк = Rj/n. При параллельном соединении двух сопротивлений R1 и R2 эквивалентное сопротивление определяется как

а токи распределяются обратно пропорционально этим сопротивлениям, при этом

U = R1I1 = R2I2 = … = RnIn.

При смешанном соединении сопротивлений, т.е. при наличии участков электрической цепи с последовательным и параллельным соединением сопротивлений, эквивалентное сопротивление цепи определяется в соответствии с выражением

Во многих случаях оказывается целесообразным также преобразование сопротивлений, соединенных треугольником (рисунок 1.5), эквивалентной звездой (рисунок 1.5).

Рисунок 1.5 Электрическая цепь с соединением сопротивлений треугольником и звездой

При этом сопротивления лучей эквивалентной звезды определяют по формулам:

R1 = ; R2 = ; R3 = ,

где R1, R2, R3 - сопротивления лучей эквивалентной звезды сопротивлений;

R12, R23, R31 - сопротивления сторон эквивалентного треугольни-ка сопротивлений. При замене звезды сопротивлений эквивалентным треугольником сопротивлений, сопротивления его рассчитывают по формулам:

R31 = R3 + R1 + R3R1/R2; R12 = R1 + R2 + R1R2/R3; R23 = R2 + R3 + R2R3/R1.

Просмотров