Как быстро проверить компьютерный блок питания. Электрическая нагрузка блока питания Блок нагрузки для блока питания компьютера

Проверять неисправный БП компьютера, подключая его к исправному системному блоку чревато выходом материнской платы и другого оборудования из строя. Ведь неизвестно, какие напряжения выдает БП, и если они завышены, то последствия могут быть серьезные, вплоть до выхода из стоя материнской платы. Поэтому проверять и ремонтировать БП безопаснее и удобнее, подключая его к Блоку нагрузок. Блок нагрузок не сложно сделать самостоятельно и это целесообразно, если приходится периодически сталкиваться c необходимостью проверки блоков питания компьютеров.

Электрическая схема Блока нагрузок

Приведенная схема Блока нагрузок и индикации наличия напряжений, не смотря на свою простоту, позволяет даже без измерительных приборов, с помощью этого простейшего испытательного стенда моментально оценить работоспособность любого БП компьютера, даже не извлекая его из системного блока.

Для полноценной проверки БП компьютера, достаточно нагрузить его на 10% от максимальной мощности. Исходя из этих требований и выбраны номиналы нагрузочных резисторов стенда R1-R5 по шинам +3,3 В, +5 В и +12 В соответственно. Резисторы R6-R12 служат для ограничения тока через светодиоды для индикации наличия напряжений VD1-VD7. Выключатель S1 эмитирует ключевой транзистор на материнской плате включения блока питания, как будто нажимается кнопка на системном блоке «Пуск». Переключатель служит для коммутации шин питающих напряжений к розетке, предназначенной для подключения измерительных приборов – вольтметра и осциллографа.

Конструкция Блока нагрузок и индикации напряжений

Все детали Блока нагрузок собраны в корпусе блока питания от компьютера, отслуживший свой срок.


На одной из сторон установлены светодиоды, выключатель S1, розетка для подключения измерительных приборов и переключатель для коммутации.


На противоположной стороне стенда, на месте, где подключался шнур питания, закреплена печатная плата с двумя разными разъемами для возможности подключения любых моделей блоков питания. Плата вместе с разъемами выпилена из неисправной материнской платы. Снизу прикручены четыре ножки, которые улучшают отвод тепла и не дают винтам царапать поверхность стола.


Монтаж элементов стенда выполнен навесным способом. Резистор R5 мощностью 50 Вт закреплен на уголке, который привинчен к дну корпуса. Остальные мощные резисторы привинчены к алюминиевой пластине. Пластина закреплена к дну винтами на стойках. Светодиоды вклеены в отверстия корпуса клеем Момент, на их ножки напаяны токоограничительные резисторы. Так как при подключении источника питания, на нагрузочных резисторах выделяется много тепла, то в корпусе стенда оставлен родной кулер, который заодно выполняет функцию нагрузки по цепи -12 В. Резисторы R1-R5 применены переменные проволочные типа ППБ.


Проволочные переменные резисторы ППБ можно с успехом заменить постоянными типа ПЭВ, С5-35, С5-37, подключив их, как показано на схеме, подойдут и автомобильные лампочки, подобранные по мощности. Можно резисторы намотать и самостоятельно из нихромовой проволоки . Светодиоды можно применить любого типа. Для индикации напряжений положительной и отрицательной полярности лучше применить светодиоды разного цвета свечения. Для положительной полярности – красного, а для отрицательной – зеленого цвета.

Проверка БП компьютера

Проверку Блока питания компьютера проводить просто, достаточно подключить разъем блока к разъему Блока нагрузок и подать штатным шнуром на блок питания 220 В.


Когда выключатель S1 находится в разомкнутом положении, то должен светиться только один светодиод +5 B_SB. Это говорит о том, что схема формирования дежурного напряжения +5 В SB в Блоке питания работает и источник готов к запуску. После включения S1 сразу же должен заработать кулер и засветиться все светодиоды, кроме светодиода VD5, Power Good. Он должен засветиться с задержкой 0,1-0,5 секунд. Это время задержки подачи питающих напряжений на материнскую плату на время переходных процессов в Блоке питания при запуске. Отсутствие задержки может вывести материнскую плату из строя из-за подачи на нее ненормированных напряжений.

Если происходит так, как я описал, то Блок питания исправен. При размыкании S1 все светодиоды должны погаснуть, кроме, VD4 (+5 B SB). Напряжение -5 В в последних моделях Блоков питания компьютеров отсутствует и светодиод может не светиться. В Блоках питания последних моделей может также отсутствовать напряжение -12 В.

Для более детальной проверки Блока питания компьютера, необходимо подсоединить к разъему на лицевой стороне стенда-тестера вольтметр постоянного тока , мультиметр или стрелочный тестер, включенный в режим измерения постоянного напряжения и осциллограф. Устанавливая переключатель на стенде в нужные положения, проверяются все напряжения, а с помощью осциллографа измеряется размах пульсаций. Как видите, практически за минуту с помощью сделанного своими руками нагрузочного стенда, можно проверить любой Блок питания компьютера даже без приборов, не подвергая риску материнскую плату.

Отклонение питающих напряжений от номинальных значений и размах пульсаций не должны превышать значений, приведенных в таблице.

Таблица выходных напряжений и размаха пульсаций БП АТХ
Выходное напряжение, В +3,3 +5,0 +12,0 -12,0 +5,0 SB +5,0 PG GND
Цвет провода оранжевый красный желтый синий фиолетовый серый черный
Допустимое отклонение, % ±5 ±5 ±5 ±10 ±5
Допустимое минимальное напряжение +3,14 +4,75 +11,40 -10,80 +4,75 +3,00
Допустимое максимальное напряжение +3,46 +5,25 +12,60 -13,20 +5,25 +6,00
Размах пульсации не более, мВ 50 50 120 120 120 120

Напряжение +5 В SB (Stand-by) – вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.

Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.

При измерении напряжений «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» – к контактам в разъеме. Можно проводить измерения выходных напряжений непосредственно в работающем компьютере.

Современные блоки питания, в общем, и для компьютера в частности, представляют собой довольно сложные устройства. Основных только электрических характеристик больше десятка, а есть еще шумовые, тепловые, массогабаритные. Все блоки питания стандарта АТХ являются импульсными преобразователями с различными вариациями схемных решений, но с единым принципом работы. Без специального оборудования, в виде управляемых нагрузок, осциллографа и некоторых других устройств невозможно протестировать соответствие стандарту характеристик, указанных на наклейке и в паспорте блока питания. Самый простой вопрос "Хватит ли блока питания ХХХ для работы компьютера УУУ?" на самом деле вовсе не так прост. Для ответа на поставленный вопрос необходимо ознакомиться с разнообразными характеристиками существующих блоков питания и типичным потреблением компьютерного железа.

Характеристики блока питания

Все основные характеристики и требования в той или иной степени описаны в документах, известных как ATX12V Power Supply Design Guide Version 2.2, SSI EPS12V Power Supply Design Guide Version 2.91 и аналогичных. Эта документация предназначается производителям блоков питания для обеспечения совместимости их аппаратуры с общепринятым стандартом ATX. Сюда входят геометрические, механические и, конечно же, электрические характеристики устройств. Вся документация доступна в открытом виде в сети Internet (ATX12V PSDG/SSI EPS PSDG). Приведем основные темы, описанные в этой документации. Начать стоит с наиболее важной величины, которая указывается на каждом блоке питания доступном в розничной продаже.

  • Допустимая мощность нагрузки

Каждый блок питания имеет несколько выходных каналов с различным напряжением и рассчитан на определенную долговременную мощность по каждому из них. Современный стандарт предписывает наличие каналов с напряжением +5В, +12В, +3.3В, -12В и дежурное напряжение +5В. Общая мощность обычно обозначена в ваттах на наклейке (по-английски звучит как Total Power). Эта величина представляет собой сумму всех мощностей по каждому из каналов и легко подсчитывается суммированием произведения токов на соответствующие напряжения. К примеру, у нас имеется блок питания с мощностью 500 ватт, с указанными допустимыми токами: +3.3В 30А, +5В 30А, +12В 40А, -12В 0.8А, +5Вд 2.5А. Перемножив и просуммировав, получаем итоговую цифру (250+480+9.6+12.5) = 752.1 Вт. Почему же на наклейке указано 500Вт? Дело в том, что существует взаимная зависимость каналов их совместной максимальной мощности. На наклейке указано, что максимальная мощность по каналам +3.3В и +5В не может превышать 152 Вт в любом случае, а общая суммарная мощность каналов +12В и +3.3 & 5В не должна превысить 480 Вт. То есть, мы можем нагрузить блок на полную мощность по +12В, оставив без нагрузки низковольтные каналы, либо при полной мощности каналов +3.3 и +5В (152 Вт в нашем случае), можем использовать только 328 Вт по +12В. Поэтому при подсчетах нужно быть внимательным и всегда обращать внимание на допустимую комбинацию нагрузки по каждой линии. Обычно это указано на наклейке, в виде общей ячейки с единой величиной мощности для нескольких каналов.

С учетом этого фактора новый пересчет мощности будет выглядеть так: 152+328+9.6+12.5=502.1 Вт, либо 0+480+9.6+12.5=502.1 Вт, либо любая из допустимых вариаций между этими двумя крайними значениями распределения мощностей по каналам. Исходя из этого, возникает вопрос – а как же тестировать блок: на полной нагрузке по низковольтным каналам, либо на максимальной мощности канала +12В? А может на каком-то промежуточном значении? Рассмотрим этот момент в дальнейшем подробнее.

Также не стоит путать параметры максимальной долговременной мощности и пиковой мощности (Total Peak Power), допустимой на небольшой период времени (17 секунд согласно ATX 2.2 и 12 секунд по EPS 2.91). К примеру, блок питания с номинальной мощностью 500Вт может выдать в пике до 530 Вт, но для блока питания постоянно работать с превышением номинальной мощности нежелательно, ведь запас прочности компонентов может оказаться не очень большим, и жарким летом случится неприятный фейерверк.

  • Допустимый уровень отклонения напряжений

Эта характеристика является одним из основных и определяет допустимое отклонение каждого из напряжений. Удобнее и нагляднее будет представить эти величины как две таблицы, взятые из стандарта EPS 2.91:

Таблица 20 отражает максимально допустимый уровень отклонений, а таблица 21 – опциональный, с более жесткими рамками, актуальными для графических станций и серверов. Если отклонение по напряжению будет ниже 5-10% порога, вероятно появление сбоев в работе компьютера, либо спонтанные перезагрузки во время большой нагрузки на процессор или видеокарту. Слишком же высокое напряжение негативно сказывается на тепловом режиме работы преобразователей на материнской плате и платах расширения, а также способно вывести из строя чувствительные схемы винчестеров, либо вызвать их повышенный износ. В более лояльном ATX Power Supply Design Guide дополнительно для каналов с напряжением +12В регламентируется допустимое 10%-ное отклонение при пиковой нагрузке на эти каналы. При этом напряжение канала +12V2 (обычно используемого для питания процессора) не должно снизиться менее +11 В.

  • Уровень пульсаций

Не менее важным является и минимально возможные выбросы (пульсации) напряжения на каждой из линий. Допустимые рамки описаны в стандарте как обязательные и выглядят так:

Источниками пульсаций обычно являются схемы преобразователей внутри самого блока питания, а также мощные потребители с импульсным характером потребления, такие как процессоры, видеокарты. Винчестеры и имеющийся в них блок магнитных головок во время частого перемещения также может создавать всплески помех, однако их величина мощности значительно меньше.

  • Входное напряжение, эффективность и PFC

Блок питания обязан работать во всех допустимых режимах при следующих входных напряжениях:

Наличие напряжений, указанных в таблице ниже, не должно приводить к повреждению схем блока питания. Пропадание сетевого напряжения на любой период времени, в любой момент работы также не должно приводить к неисправности блока. При включении, ток зарядки высоковольтных конденсаторов не должен превышать номинальные значения входных цепей (предохранитель, выпрямительные диоды и схемы ограничения тока).

Существует миф, что более мощный блок питания потребляет больше мощности из розетки, по сравнению с маломощным дешевым собратом. На самом деле, часто в реальности имеет место обратная ситуация. Каждый блок имеет потери энергии при преобразовании сетевого напряжения в низковольтное постоянное, идущее к компонентам компьютера. КПД (эффективность) современного дешевого блока обычно колеблется около величины 65-70%, в то время как более дорогие модели могут обеспечивать эффективность работы до 85%. Например, подключив оба блока к нагрузке 200 Вт (примерно столько потребляет большинство компьютеров), мы получим потери 70 Вт в первом случае и лишь 30 Вт во втором. 40 ватт экономии при ежедневной работе компьютера по 5 часов в сутки и 30-дневном месяце помогут сэкономить 6 кВт на счете за электроэнергию. Конечно, это мизерная цифра для одного ПК, но если взять уже офис на 100 компьютеров, то цифра может оказаться заметной. Также стоит учесть, что эффективность преобразования различна при разной мощности нагрузки. А поскольку пик КПД приходится на 50-70% диапазон нагрузок, практического смысла в приобретении БП с двукратным и более запасом мощности нет.

Эффективность работы должна превышать 70% для полной нагрузки, и 65% для 20%-нагрузки. При этом рекомендуемая эффективность как минимум 75% или лучше. Существует добровольная система сертификации для производителей, известная как Plus 80 . Все источники питания, участвующие в этой программе, имеют эффективность преобразования свыше 80%. На текущий момент список участников-производителей в инициативе Plus 80 включает более 60 наименований.

Также нельзя путать КПД блока питания с такой характеристикой как коэффициент мощности (Power Factor). Существует реактивная мощность и активная, и коэффициент мощности отражает отношение реактивной мощности к общей суммарной мощности потребления. Большинство блоков питания без каких-либо схем коррекции обладают 0.6-0.65 фактором мощности. Поэтому импульсные блоки питания в значительной степени создают реактивную мощность, и их потребление выглядит как мощные импульсы во время пиков синусоиды сетевого напряжения. Это создает помехи в электросети, которые могут повлиять на другие устройства, питаемые от той же электросети. Для устранения этой особенности применяются схемы с пассивной коррекцией фактора мощности (Passive PFC) и активной (Active PFC). Активный PFC эффективно справляется с этой задачей, по сути, являясь преобразователем между самим блоком питания и электросетью. Фактор мощности в блоках с использованием APFC легко достигает величины 0.97-0.99, что значит практически полное отсутствие реактивной составляющей в потреблении БП. Пассивная схема коррекции Power Factor представляет собой массивный дроссель, включенный последовательно сетевым проводам блока питания. Однако он значительно менее эффективен и на практике повышает фактор до 0.7-0.75. С точки зрения компьютера и потребителя разницы между блоком с APFC и блоком вообще без коррекции практически нет, использование первых выгодно компаниям электроснабжения.

  • Сигнальные линии PSON и PWOK

PSON (Power Supply ON) – специальная сигнальная линия для включения\выключения блока питания логикой материнской платы. Когда этот сигнал не подключен к земле, блок питания должен оставаться в выключенном состоянии, за исключением канала +5В (дежурное). При логическом нуле (напряжение ниже 1 В) – логика включает блок питания. PWOK (Power OK) – сигнальная линия, по которой блок питания сообщает материнской плате, что все выходные линии находятся в нормальном состоянии и стабилизация осуществляется в заданных стандартом пределах. Время задержки появления сигнала при нормальной работе блока питания с момента подачи логического нуля по PSON – 900 мс.

  • Схемы защиты

Блок питания должен иметь схемы защиты, которые отключат основные выходы при нештатных ситуациях. Защита должна блокировать повторный запуск до повторного появления сигнала включения на проводе PSON. Защита от перегрузки по току (Over Current Protection, OCP) обязательна для линий +3.3, +5, +12, -12, +5 (дежурное), минимальный порог срабатывания – 110%, максимальный 150%. При перегрузке блок должен выключится и не включаться до появления сигнала включения, или до полного обесточивания сетевого напряжения. Защита от перенапряжения (Over Voltage Protection, OVP) также обязательна и должна отслеживаться внутри самого источника питания. Напряжение никогда не должно превышать указанные в таблице 29 в любой момент времени.

Защита от перегрева (Over Temperature Protection, OTP) блоков питания не является обязательной функцией, поэтому весьма важно соблюдать условия эксплуатаций источников питания в тесных корпусах, либо в местах с ухудшенной вентиляцией. Максимальная температура воздуха во время работы не должна превышать +50°С. Некоторые производители рассчитывают и указывают мощность блока питания при пониженной температуре +25, или даже +15°С, и попытка нагрузить указанной мощностью подобное изделие в жаркую погоду может привести к неприятному финалу. Это именно тот случай, когда примечание шестым пунктом снизу имеет значение. Если удается найти допустимый температурный диапазон для конкретной модели блока на тестах, мы указываем это явно в таблице с характеристиками.

Защита от короткого замыкания (Short Curcuit Protection, SCP) – является обязательной для всех блоков питания, проверяется кратковременным подключением силовой шины между каналами и землей блока питания.

  • Немного о разделении +12В канала на несколько «виртуальных»

Набившее оскомину разделение каналов вызвано требованием стандарта безопасности EN60950, который предписывает ограничить ток на доступных пользователю контактах на уровне 240 ВА. Так как общая суммарная мощность канала +12В в мощных блоках питания может превышать эту величину, было принято решение ввести разделение на несколько отдельных каналов с индивидуальной защитой по току менее чем 20А. Эти раздельные каналы вовсе не обязаны иметь индивидуальную стабилизацию внутри БП. Поэтому на самом деле, почти все блоки питания имеют один сильноточный канал +12В, вне зависимости от количества виртуальных каналов. Хотя на рынке имеется несколько моделей с действительно раздельными стабилизаторами и несколькими независимыми линиями +12В, однако это лишь исключение из общего правила. Для компьютерных комплектующих виртуальное, как и реальное разделение по каналам никоим образом не сказывается, а те из компонент, которые могут потребовать ток более чем 18-20А, имеют возможность подключения двух разделенных каналов. Так 8-контактный разъем питания процессора на материнских платах имеет по два контакта на каждый из двух каналов, а топовые видеокарты NVIDIA и AMD имеют два 6-контактных (либо комбинацию из 6-контактного и 8-контактного, как у Radeon 2900 XT, Radeon HD 3870 X2, GeForce 9800 GX2) разъема.

Кроме электрических характеристик имеются и физические. Каждый блок, претендующий на соответствие форм-фактору ATX должен иметь ширину 150мм, при высоте 86мм. Глубина блока может варьироваться от 140мм до 230мм и более.

  • Кабельное оснащение блока

Существующие блоки питания оснащаются массой кабелей с разными типами разъемов. Информация об их длинах и количестве позволит еще до покупки определить, подойдет ли конкретная модель под нужный корпус, либо придется докупать переходники и удлинители. Все эти параметры отображаются в виде таблицы для каждого из протестированных блоков. Верхняя часть – несъемные кабели, а ниже, в случае наличия отстегиваемых проводов, с отступом указаны количество и длины всех кабелей с разъемами.

Если на одном проводе имеется несколько разъемов – длины до каждого записываются в ряд. К примеру, общая длина кабеля в примере выше для последнего разъема SATA – 45+15+15 = 75см. Нестандартные разъемы, к примеру, 3-контактный кабель мониторинга оборотов вентилятора, или переходники указываются в нижних строках таблицы. Кроме перечисления кабелей и их видов, определяется толщина проводов, использованных в кабелях, наличие дополнительных проводов для мониторинга и компенсации сопротивления проводов к разъему (так называемые Vsense-провода).

  • Шумность системы охлаждения

Почти все блоки питания оснащаются вентилятором для активного охлаждения компонентов внутри корпуса. Кроме этого, вентилятор также выбрасывает подогретый воздух внутри корпуса компьютера наружу в окружающую среду. Большинство современных источников питания имеют вентилятор типоразмера 120 мм, расположенный на нижней стенке. Все чаще встречаются модели с вентилятором 135 или даже 140 мм, благодаря чему можно добиться снижения уровня шума при сохранении эффективности охлаждения. Однако в старших мощных моделях по-прежнему применяется 80 мм вентилятор в задней торцевой стенке, который выбрасывает воздух из БП наружу. Возможны также вариации с использованием разного расположения вентилятора, либо применением нескольких вентиляторов. Почти все блоки оснащены схемой динамического управления оборотами вентиляторов, в зависимости от температуры внутри БП (чаще всего температуры радиатора с диодами стабилизатора).

Мощность, потребляемая различным комплектующими

Наибольшая доля потребляемой мощности приходится на центральный процессор и видеокарты. В Internet имеется масса различных калькуляторов потребления компьютера. Довольно достоверные результаты выдает . Наша тестовая система на базе процессора Intel Xeon 3050, мат.платы Intel DP35DP, четырех модулей памяти DDR2, видеокарты NVIDIA GeForce 6600GT и трех винчестеров Seagate ST3320620AS, согласно расчетам калькулятора, требует блока питания с мощностью 244 Вт. Замеренное реальное потребление системы под нагрузкой достигло величины 205 Вт. Цифры схожие, да и наличие некоторого запаса по мощности не помешает, ведь конфигурация ПК со временем может меняться, например, добавится еще один винчестер, или видеокарта будет заменена на более производительную. Будет неприятно менять и блок питания при каждой такой замене. Современные 4-ядерные процессоры на базе 65-нм ядер Intel и AMD требуют до 100-140Вт мощности (без разгона), а 45-нм Intel Core 2 Extreme QX9650 довольствуется 75-80Вт при полной нагрузке. Куда более прожорливы старшие видеокарты NVIDIA и ATI, а тандем из двух видеокарт GeForce 8800 Ultra либо ATI Radeon HD 3870 X2 может потребовать до 350-450 Вт на одну только графическую подсистему. В таких конфигурациях логично и необходимо использовать соответствующие блоки питания, с мощностью 500-600Вт. Остальные компоненты потребляют немного, один винчестер едва дотягивает до отметки 15-25Вт во время старта и позиционирования головок, модуль памяти в среднем требует 4-10Вт, периферийные платы – 5-25Вт. Системы охлаждения за исключением комплексов с использованием термоэлектрических элементов также потребляют немного: 10-40Вт.

Методика и стенд для тестирования

Теперь немного понятно, что для полноценного тестирования блока питания недостаточно просто измерить вольтметром напряжение на выходах. Это лишь может показать отсутствие явных и серьезных проблем в работе блока питания, но не более того. Основная проблема обеспечения качественного питания обычно заключается в неспособности блока питания выдавать нужный ток для каждой компоненты компьютера, либо чрезмерном отклонении напряжений от номинала. Всевозможные вариации тестирования «методом вольтметра» могут лишь показать, что компьютер способен работать на конкретно взятой нагрузке, в конкретный момент времени, но абсолютно не показывает, насколько большую мощность в реальности может выдать блок питания, и не показывает, что случится с блоком питания, если нагрузка превысит допустимую мощность.

Для проведения тестирования и выяснения технических характеристик каждой блок питания подключается к специальному стенду, который позволяет одновременно измерять уровни напряжения и тока на всех выходных каналах в автоматическом режиме. Перед тестированием на стенде все блоки питания разбираются, фотографируются, проверяется качество пайки и монтажа, осматриваются компоненты на платах на предмет дефектов. В случае наличия, оные описываются в статье, со ссылкой на тот факт, что один конкретно взятый блок может оказаться бракованным, как и любое другое сложное электронное оборудование. Также всегда приводится фотография наклейки блока питания, с допустимыми величинами мощности по всем каналам. Если плотность монтажа позволяет, проводится обзор примененной элементной базы и особенности схематических решений. Часто встречается ситуация, когда компании сами не разрабатывают, а только продают блоки питания сторонней разработки OEM-компаний. Это обычно можно определить по коду сертификата UL, он редко скрывается и наносится на наклейке с основными параметрами, и выглядит как “E123456”. Примером использования данного принципа является OCZ, Tagan, ThermalTake и другие. Определить принадлежность кода к названию производителя можно на сайте UL Online Certifications Directory , задав поиск по коду с наклейки в графе UL File Number.

Для коробочных изделий обозревается комплектация и дополнительные аксессуары. На этом же этапе данные о мощности блока и каналов с наклейки блока питания заносятся в программу управления стендом, и подключаются все необходимые разъемы, в соответствии с распределением каналов. Проверяется работа схем защиты от короткого замыкания (каждая линия последовательно подключается на земляную шину), а также защита от перегрузки по каналам. Блок измерения входных параметров сети на данный момент находится в разработке, поэтому замеры КПД, коэффициента мощности и работа БП при различном диапазоне входных напряжений временно не проводятся. После проведения базовой проверки функционирования блока питания проводится снятие графиков кросс-нагрузочной характеристики (КНХ). Обычно для стабилизации напряжений +12В и +5В в блоках питания используется групповая схема включения, которая выравнивает среднеарифметическую величину между этими двумя напряжениями. Такое устройство легко видно при обзоре внутреннего строения блока питания, для группового стабилизатора используется один дроссель большего и один меньшего диаметра для канала +3.3В, который стабилизируется отдельно. Эти дроссели обычно расположены возле места подключения проводов выходных каналов блока питания.

Недостаток такой схемы включения – напряжения +12В и +5В сильно зависят друг от друга. При сильной нагрузке на +12В напряжение на ненагруженном канале +5В начинает завышаться. Равнозначна и обратная ситуация, действует своеобразный принцип «качелей». В современных же компьютерах вся мощная нагрузка приходится именно на +12В, четырехъядерный CPU и несколько видеокарт могут легко создать нагрузку около 30А, при почти нулевой нагрузке по +5 и +3.3В.

Более предпочтителен подход с использованием раздельных дросселей для стабилизации каждого из напряжений независимо. Однако это требует дополнительного места на печатной плате, да и сами дроссели денег стоят, поэтому подобное решение используется только в довольно дорогих блоках питания. Кроме этого, в блоках могут применяться дополнительные цепи для стабилизации напряжений, а эффективность их работы и призвано наглядным образом показать на графике КНХ.

В качестве нагрузки, а также для упрощения и автоматизации тестирования был разработан и изготовлен стенд на базе RISC-микроконтроллера ATMEL AT91SAM7A3. Для нагрузки используется шесть независимых идентичных каналов. Характеристики каждого из них приведены ниже в таблице.

Физически электроника и платы стенда с помощью стоек смонтированы на алюминиевом радиаторе с размерами 750х122х38 мм. Непосредственно сами силовые ключи установлены на стенку радиатора. Для охлаждения радиатора используются мощные вентиляторы Nidec Beta V и Delta DFB1212SHE типоразмера 120х38, а крыльчатка каждого вращается со скоростью свыше 4000 оборотов\минуту.

Возможности стенда довольно широки и включают на данный момент:

  • Включение\отключение БП при помощи управления сигналом PSON
  • Непрерывное слежение за состоянием сигнала PWOK
  • Измерение токов и напряжений по каждому из основных каналов
  • Установка заданной нагрузки по любому из каналов
  • Калибровка стенда для получения точных измерений

Сам стенд имеет индикацию состояния всех линий блока питания, а именно: PWON, PSON, +3.3V, +5V, +12V1, +12V2, +12V3, +12V4, +5standy (дежурное), -12, -5 (для старых БП). Также имеется несколько других контрольных светодиодов. Для подключения тестируемого блока питания к стенду имеется один 24-контактный разъем ATX, четыре 8-контактных разъема питания PCI-Express, один 8-контактный разъем для процессорного кабеля и восемь 4-контактных периферийных разъемов.

Для управления работой стенда, его настройки и контроля используется специальное программное обеспечение, работающее под управлением ОС Windows, которое постоянно обменивается данными с микроконтроллером стенда. Связь осуществляется при помощи интерфейса USB, который имеется на любом современном ПК.

В ручном режиме каждый канал стенда может независимо настраиваться, а контроль напряжений и токов проводится непрерывно, что позволяет быстро выяснить пороги стабильной работы блока. Программа позволяет также генерировать импульсы с различной величиной тока, для проверки устойчивости блока к импульсным нагрузкам (например, одновременный старт нескольких винчестеров, либо работа видеокарт в SLI/CF).

В автоматическом режиме программа строит 6 графиков (для каждого канала отдельный график). По оси Х суммарная величина потребляемой стендом мощности по каналу +12В, а по Y – суммарная мощность от каналов +3.3 и +5В. Может быть задан любой предел по мощности нагрузки, в рамках допустимой мощности стенда. Каждая точка графика на пересечении осей обозначает величину напряжения по каналу при суммарной нагрузке на каналы +3.3, +5 и +12В. То есть, на графике напряжения +3.3В все поле графика – это величина напряжения при всех возможных комбинациях нагрузок. Зная заявленные в стандарте и описанные нами ранее в статье допустимые отклонения по каждому напряжению – мы можем достоверно утверждать, на сколько процентов блок питания снизил, либо превысил напряжение относительно идеальных 3.300В, 5.000В и 12.000В. Но приводить в статье этот огромный массив цифр не имеет практического смысла, и все величины отклонений удобнее отобразить на графике цветовыми маркерами. Легенда с отклонениями прилагается на каждом графике и позволяет легко определять, где вложился блок питания в требования стандарта, а где нет. Пониженное напряжение отображается оттенками синего, повышенное относительно номинала – красными. Уровни за пределами стандарта (+\-5%) отображены темно-синим и темно-красными цветами. Шаг между каждой из точек составляет 0.2-0.5 А в зависимости от заданных условий тестирования. Типичный блок питания с мощностью 500Вт в автоматическом режиме тестируется около часа, при этом производится около 10000 измерений, и такое же количество ступеней управления нагрузкой. Провести вручную аналогичный тест заняло бы массу времени. Для блоков с типичной мощностью КНХ может сниматься в соответствии с нагрузочными моделями, описанными для типичных нагрузок в стандартах ATX PSDG 2.2 и EPS PSDG 2.91.

После проведения замеров, графики компонуются в один анимированный GIF-файл и публикуются в статье. Итоговый вид приблизительно таков:

Грубо говоря – чем больше зеленого цвета на графике – тем меньше отклонение напряжений от идеала. Напомним, что основное потребление современных ПК приходится на +12В канал, поэтому важно минимально возможное отклонение именно в горизонтальной плоскости графика.

Кроме КНХ замеряются уровни пульсаций на каждом из основных каналов. Для этого используется 4-канальный осциллограф Tektronix 2246-1Y, с максимальной частотой 100 МГц, чего с большим запасом достаточно для обнаружения и измерения всех возможных пульсаций блока питания. Пульсации замеряются при 100% нагрузке на блок питания, именно в этих условиях их величины максимальны. Чем ниже пульсации – тем меньше наводок и помех создает блок питания в питаемых им устройствах. Это особенно важно для чувствительных звуковых карт, тюнеров и подобных устройств. В дальнейшем замер пульсаций также будет автоматизирован.

Итоги и дальнейшие пути усовершенствования

На текущий момент использованная методика и стенд позволяют с хорошей точностью определить основные нагрузочные возможности, уровень пульсаций и соответствие допускам стандарта по всем основным питающим каналам блока питания. Однако всегда есть возможность внести улучшения, поэтому в скором времени планируется реализация блока для автоматического замера эффективности преобразования (КПД) блока питания, замеры фактора мощности, оптические датчики для замеров скорости вращения вентиляторов блока и температурные измерения в условиях, приближенных к реальным средам использования. Данная статья будет периодически обновляться, с учетом вносимых изменений. Также все пожелания и дополнения читателей будут внимательно рассмотрены и приняты во внимание.

Версия 1.01b от 2.02.2008. Начальная версия.

  • ATX12V Power Supply Design Guide, version 2.2
  • SSI EPS Power Supply Design Guide, version 2.91
  • eXtreme Power Supply Calculator Pro - калькулятор потребляемой мощности для различных конфигураций
  • Plus80.org - сайт программы сертификации Plus 80

Выражаю благодарности за помощь в создании стенда

J-34 , izerg , MAXakaWIZARD , cyclone .


Когда я начал пробовать ремонтировать компьютерные блоки питания у меня возникла одна проблемка. Дело в том, что не очень удобно постоянно подключать БП к компьютеру (просто масса неудобств), а также не безопасно (так как неправильно или не до конца отремонтированный блок может вывести из строя материнскую плату или другую периферию).
Немного поискав по интернету схемы, нашел немного схемотехнических решений этой проблемы. Были и на микроконтроллере, на транзисторах-резисторах с печатной платой (что в будущем думаю сделать и себе), и на нихромовых спиралях. Так как ближайший радиомагазин от меня 150км то я решил собирать нагрузку из того что завалялось в гараже и нихромовой спирали, которая продается к электрическим плитам почти в любом електромагазине.

Корпус я выбрал от того же БП, основные соединения паял, а некоторые брал на зажимные колодки, сделал светодиодную индикацию каналов: +12, +5, +3,3, +5VSB, PG. Нет пока нагрузки на каналы -5, -12. Поставил включатель от БП который соединяет PS_ON и GND. Вывел на заднюю панель провода от всех номиналов питания, для проверки напряжения тестером. Разъем выпаян от материнской платы, а также остался вентилятор для обдува спиралей и резисторов. На нагрузку +12В были использованы два резистора от старых телевизоров 5,1Ом.

Несколько слов о том, как измерить спираль. Берем тестер и мерим все сопротивление, дальше мерим длину всей спирали. Зная длину спирали до миллиметра, делим сопротивление в Ом на миллиметры и узнаем, сколько Ом на 1мм. Дальше вычисляем длину отрезка спирали.
Пример.

Смотрим схему (она очень простая и легкая для повторения):

А теперь несколько фото завершенного прибора.

При тестировании мощных блоков питания используется электронная нагрузка, например, для принудительной установки заданного тока. На практике часто применяются лампы накаливания (что является плохим решением из-за низкого сопротивления холодной нити) или резисторы. На сайтах интернет-магазинов доступен для покупки модуль электронной нагрузки (по цене около 600 рублей).

Такой модуль имеет следующие параметры: максимальная мощность 70 Вт, длительная мощность 50 Вт, максимальный ток 10 А, максимальное напряжение 100 В. На плате имеется измерительный резистор (в виде изогнутого провода), транзистор IRFP250N, TL431, LM258, LM393. Чтобы запустить модуль искусственной нагрузки необходимо закрепить транзистор на радиаторе (лучше оснастить вентилятором), включить потенциометр, обеспечивающий регулировку тока и подключить источник питания 12 В. Вот упрощенная структурная схема:

Разъем V- V+ используется для подключения проводов, соединяющих испытуемое устройство, последовательно с этой цепи стоит включить амперметр для контроля заданного тока.

Питание подводится на разъем J3, само устройство потребляет ток 10 мА (не считая потребления тока вентилятора). Потенциометр подключаем к разъему J4 (PA).

Вентилятор на 12 В можно подключить к разъему J1 (FAN), на этом разъеме присутствует напряжение питания с разъема J3.

На разъеме J2 (VA) есть напряжение на клеммах V- V+, можем подключить здесь вольтметр и проверить, что за напряжение на выходе нагрузки источника питания.

При токе 10 А, ограничение непрерывной мощности до 50 Вт приводит к тому, что напряжение на входе не должно превышать 5 В, для мощности 75 Вт, напряжение 7.5 В соответственно.

После тестирования с блоком питания в качестве источника напряжения подключили аккумулятор с напряжением 12 В, чтобы не превышать 50 Вт — ток не должен быть больше 4 A, для мощности 75 Вт — 6 A.

Уровень колебаний напряжения на входе модуля является вполне приемлемым (согласно осциллограммы).

Схема принципиальная эл. нагрузки

Это не 100% точная схема, но вполне похожая и неоднократно собранная людьми. Есть и рисунок печатной платы.

Принцип действия

Транзистор — МОП-транзистор с каналом N-типа, с большим током Id и мощностью Pd и меньшим сопротивлением RDSON. От его параметров будут зависеть предельные токи и напряжения работы блока искусственной нагрузки.

Был использован транзистор NTY100N10, его корпус to-264 обеспечивает хорошее тепловыделение, а его максимальная мощность рассеивания 200 Вт (зависит от радиатора, на котором его разместим).

Вентилятор также необходим, для его управления применен термистор RT1 — при температуре 40 oC он отключает питание и опять включает когда температура радиатора превышает 70 oC. При нагрузке 20 А, резистор должен иметь мощность 40 Вт и быть хорошо охлажден.

Для измерения тока использован амперметр на популярной микросхеме ICL7106. Схема не требует настройки, после правильной сборки работает сразу. Нужно только подобрать R02 чтобы минимальный ток составлял 100 мА, также можно выбрать значение R01 чтобы максимальный ток не превышал 20 А.

«Р ежим питания нарушать нельзя» – говорил персонаж известного мультфильма. И был прав: от качества еды зависит здоровье, причем не только человека. Наши электронные друзья нуждаются в хорошей «пище» ничуть не меньше нас.

Довольно ощутимый процент неисправностей компьютеров связан с проблемами по питанию. При покупке ПК нас обычно интересует, насколько быстрый у него процессор, сколько памяти, но почти никогда мы не пытаемся узнать, хороший ли в нем блок питания. Стоит ли потом удивляться, что мощное и производительное железо работает кое-как? Сегодня поговорим, как проверить блок питания стационарного компьютера на работоспособность и исправность.

Немного теории

З адача блока питания (БП) персонального компьютера – преобразовывать высокое переменное напряжение бытовой электросети в низкое постоянное, которое потребляют устройства. Согласно стандарту ATX, на выходе у него формируется несколько уровней напряжения: +5 V , +3,3 V , +12 V , -12 V , +5 V SB (standby – дежурное питание).

От линий +5 V и + 3,3 V питаются USB-порты, модули оперативной памяти, основная масса микросхем, часть вентиляторов системы охлаждения, платы расширения в слотах PCI, PCI-E и т. д. От 12-вольтовой линии – процессор, видеокарта, двигатели жестких дисков, оптические приводы, вентиляторы. От +5 V SB – логическая схема запуска материнской платы, USB, сетевой контроллер (для возможности включения компьютера с помощью Wake-on-LAN). От -12 V – COM-порт.

Также БП вырабатывает сигнал Power_Good (или Power_OK), который информирует материнскую плату о том, что питающие напряжения стабилизированы и можно начинать работу. Высокий уровень Power_Good составляет 3-5,5 V.

Значения выходных напряжений у блоков питания любой мощности одинаковы. Различие – в уровнях токов на каждой линии. Произведение токов и напряжений – и есть показатель мощности питателя, который указывают в его характеристиках.

Если хотите проверить, соответствует ли ваш блок питания номиналу, можете посчитать это самостоятельно, сравнив данные, указанные в его паспорте (на наклейке с одной из боковых сторон) и полученные при измерениях.

Вот пример того, как может выглядеть паспорт:

Работает – не работает

Н аверное, вы хоть раз сталкивались с ситуацией, когда при нажатии кнопки включения на системном блоке ничего не происходит. . Одна из причин подобного – отсутствие питающих напряжений.

Блок питания может не включаться в двух случаях: при неисправности его самого и при выходе из строя подсоединенных устройств. Если не знаете, как подключенные устройства (нагрузка) могут влиять на питатель, поясню: при коротком замыкании в нагрузке многократно увеличивается потребление тока. Когда это превышает возможности БП, он отключается – уходит в защиту, поскольку иначе попросту сгорит.

Внешне то и другое выглядит одинаково, но определить, в какой части проблема, довольно просто: нужно попытаться включить блок питания отдельно от материнской платы. Поскольку для этого не предусмотрено никаких кнопок, сделаем так:

  • Отключим компьютер от электросети, снимем крышку системного блока и отсоединим от платы колодку ATX – самый многожильный кабель с широким разъемом.

  • Отсоединим от БП остальные устройства и подключим к нему заведомо исправную нагрузку – без нее современные блоки питания, как правило, не включаются. В качестве нагрузки можно использовать обычную лампу накаливания или какой-нибудь энергоемкий девайс, например, привод оптических дисков. Последний вариант – на ваш страх и риск, так как нельзя гарантировать, что устройство не выйдет из строя.
  • Возьмем разогнутую металлическую скрепку или тонкий пинцет и замкнем на колодке ATX (которая идет от БП) контакты, отвечающие за включение. Один из контактов называется PS_ON и соответствует единственному зеленому проводу. Второй – COM или GND (земля), соответствует любому черному проводу. Эти же контакты замыкаются при нажатии кнопки включения на системнике.

Вот, как это показано на схеме:

Если после замыкания PS_ON на землю в блоке питания закрутится вентилятор, а также заработает устройство, подключенное в качестве нагрузки, питатель можно считать работоспособным.

А что на выходе?

Р аботоспособность не всегда означает исправность. БП вполне может включаться, но не вырабатывать нужных напряжений, не выдавать на плату сигнал Power_Good (или выдавать слишком рано), просаживаться (снижать выходные напряжения) под нагрузкой и т. п. Чтобы это проверить, понадобится специальный прибор – вольтметр (а лучше мультиметр) с функцией измерения постоянного напряжения.

Например, такой:

Или любой другой. Модификаций этого прибора очень много. Они свободно продаются в магазинах радио- и электротоваров. Для наших целей вполне подойдет самый простой и дешевый.

С помощью мультиметра мы будем измерять напруги на разъемах работающего блока питания и сравнивать показатели с номинальными.

В норме значения выходных напряжений при любой нагрузке (не превышающей допустимую для вашего БП) не должны отклоняться больше, чем на 5%.

Порядок измерений

  • Включаем компьютер. Системник должен быть собран в обычной комплектации, т. е. в нем должно присутствовать всё оборудование, которое вы используете постоянно. Дадим блоку питания немного прогреться – примерно 20-30 минут просто поработаем на ПК. Это повысит достоверность показателей.
  • Далее запускаем игру или тестовое приложение, чтобы нагрузить систему по полной. Это позволит проверить, способен ли питатель обеспечить энергией устройства, когда они работают с максимальным потреблением. В качестве нагрузки можете использовать стрессовый тест Power Supply из программы .

  • Включаем мультиметр. Устанавливаем переключатель на значение 20 V постоянного напряжения (шкала постоянных напруг обозначена буквой V, рядом с которой нарисованы прямая и пунктирная линии).

  • Красный щуп мультиметра подсоединяем к любому разъему напротив цветного повода (красного, желтого, оранжевого). Черный – напротив черного. Или закрепляем его на любой металлической детали на плате, которая не находится под напряжением (измерение напруг следует проводить относительно нуля).

  • Снимаем показатели с дисплея прибора. По желтому проводу подается 12 V, значит, на дисплее должно быть значение, равное 12 V ± 5%. По красному – 5 V, нормальным будет показатель 5 V ± 5%. По оранжевому, соответственно – 3,3 V± 5%.

Более низкие напряжения на одной или нескольких линиях говорят о том, что БП не вытягивает нагрузку. Такое бывает, когда его фактическая мощность не соответствует потребностям системы из-за износа компонентов или не слишком высокого качества изготовления. А может, из-за того, что он изначально был неправильно подобран или перестал справляться со своей задачей после апгрейда компьютера.

Для правильного определения необходимой мощности БП удобно использовать специальные сервисы-калькуляторы. Например, . Здесь пользователю следует выбрать из списков всё оборудование, установленное на ПК, и нажать «Calculate ». Программа не только рассчитает требуемую мощность питателя, но и предложит 2-3 подходящие модели.

В результате всех преобразований входного переменного напряжения (выпрямления, сглаживания, повторной конвертации в переменное с более высокой частотой, понижения, еще одного выпрямления и сглаживания) выходное должно иметь постоянный уровень, то есть его вольтаж не должен изменяться во времени. Если смотреть осциллографом, оно должно иметь вид прямой линии: чем прямее – тем лучше.

В реальности идеально ровная прямая на выходе БП – что-то из области фантастики. Нормальным показателем считается отсутствие колебаний амплитуды более 50 mV по линиям 5 V и 3,3 V, а также 120 mV по линии 12 V. Если они больше, как, например, на этой осциллограмме, возникают вышеописанные проблемы.

Причинами возникновения шумов и пульсаций обычно бывают упрощенная схема или некачественные элементы выходного сглаживающего фильтра, что обычно встречается в дешевых блоках питания. А также в старых, выработавших свой ресурс.

К сожалению, выявить дефект без осциллографа крайне затруднительно. А этот девайс, в отличие от мультиметра, стоит довольно дорого и не так часто нужен в хозяйстве, поэтому вы вряд ли решитесь его купить. Косвенно о наличии пульсаций можно судить по качанию стрелки или беганью цифр на дисплее мультиметра при измерении постоянных напряжений, но это будет заметно, только если прибор достаточно чувствительный.

А еще мы можем измерить ток

Р аз у нас есть мультиметр, в дополнение к остальному мы можем определить токи, которые вырабатывает питатель. Ведь именно они имеют решающее значение при расчете мощности, указываемой в характеристиках.

Недостаток тока тоже сказывается на работе компьютера крайне неблагоприятно. «Недокормленная» система нещадно тормозит, а блок питания при этом греется, как утюг, поскольку работает на пределе возможностей. Долго это продолжаться не может, и рано или поздно такой БП выйдет из строя.

Трудность измерения тока заключается в том, что амперметр (в нашем случае – мультиметр в режиме амперметра) необходимо включать в разрыв цепи, а не подсоединять к разъемам. Чтобы это сделать, придется разрезать или отпаять провод на проверяемой линии.

Для тех, кто решился на эксперимент с замерами токов (а без серьезных оснований этого делать, пожалуй, не стоит), привожу инструкцию.

  • Выключите компьютер. Разделите пополам проводник на исследуемой линии. Если жалко портить провода, можете проделать это на переходнике, который одним концом подсоединяется к разъему блока питания, а вторым – к устройству.
  • Переведите мультиметр в режим измерения постоянных токов (их шкала на приборе обозначена буквой А с прямой и пунктирной линиями). Установите переключатель на значение, превышающее номинальный ток на линии (последний, как вы помните, указан на наклейке БП).

  • Подключите мультиметр в разрыв провода. Красный щуп расположите ближе к источнику, чтобы ток протекал в направлении от него к черному. Включите компьютер и зафиксируйте показатель.
П осле всех проверок у вас будет если не полное, то весьма неплохое представление, на что способен блок питания вашего компьютера. Если всё отлично, я могу за вас только порадоваться. А если нет… Эксплуатация неисправного или некачественного питателя часто заканчивается выходом из строя и его самого, и других устройств ПК. Будет весьма неприятно, если этим другим окажется дорогостоящая видеокарта, поэтому старайтесь не экономить на столь важной детали и решайте все возникшие с ней проблемы как только заметите.

Ещё на сайте:

Питаться, чтобы «жить»: как проверить блок питания компьютера обновлено: Март 8, 2017 автором: Johnny Mnemonic

Просмотров